
Preprint, Institute of Statistics, RWTH Aachen University

A SURVEILLANCE PROCEDURE FOR RANDOM WALKS BASED ON LOCAL LINEAR
ESTIMATION

Ansgar Steland

Institute of Statistics

RWTH Aachen University
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We study the problem of detecting a change in the trend of time series
whose stochastic part behaves as a random walk. Interesting applications
in finance and engineering come to mind. Local linear estimation pro-
vides a well established approach to estimating level and derivative of an
underlying trend function, provided the time instants where observations
are available get dense asymptotically. Here we study the estimation
principle for the classic time series setting where the distance between
time points is fixed. It turns out that local linear estimation is applicable
to our detection problem, and we identify the underlying (asymptotic)
parameters. Assuming that observations arrive sequentially, we propose
surveillance procedures and establish the relevant asymptotic theory,
particularly, an invariance principle for the sequential empirical local
linear process.
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1. INTRODUCTION

This paper addresses the problem of detecting a change in the drift of a time series

under the assumption that the series behaves as a random walk in large samples. We use

sequential local linear estimation and associated surveillance procedures. The problem of

detecting a change in the drift has several interesting applications, particularly, in econo-

metrics and engineering. For example, economic theory and statistical analysis suggest that

financial data such as log prices of assets, log exchange rates, log consumer price levels, and

the great ratios are or could be random walks. We refer to the studies of Frankel [1986] and

Edison [1987]. In engineering, random walks appear, e.g., as models for production pro-

cesses affected by degradation, see Birnbaum and Saunders [1969], Doksum and Hoyland

[1992] Taguchi [1985], and Taguchi et al. [1989]. The problem arises in computer science as
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well. For instance, in queuing models for devices as buffers (e.g. routers) in communication

networks, the potential workload is a random walk with drift inducing the real workload

process, cf. Whitt [2002]. Detecting changes in the drift can be used to define strategies to

select the speed at which the buffer processes the input which reduces power consumption.

In some cases, it may be necessary to check the random walk assumption. For that

purpose, various statistical tests have been proposed in the econometrics and statistics

literature. We refer to Dickey and Fuller [1979], Kwiatkowski et al. [1992], and Breitung

[2002], among others. Sequential monitoring procedures related to this problem have been

recently investigated by Steland [2007a] and Steland [2007b]. For further references on these

issues we refer to the cited articles.

Given that the random walk assumption for a time series is justified, we address the

problem of detecting an unknown (non random) change-point where the drift is no longer

given by a known model. Having in mind the above applications which provide sequential

data streams, we are interested in sequential surveillance procedures which analyse at

each time instant the available data to detect the change as quick as possible. Sequential

detectors based on the Nadaraya-Watson estimator have been applied to this problem by

Steland [2005]. That approach has the nice property that it covers an approximation of

the classic EWMA control chart procedure, a common and easy-to-use tool in sequential

analysis, as a special case. The well known boundary bias problem of the Nadaraya-Watson

estimator in the regression setting suggests the use of procedures based on local linear

estimation. Thus, the detectors studied here are based on the sequence of local linear

estimates evaluated at the current time instant. Surveillance procedures based on that

approach seem to date back to Schmid and Steland [2000], where they have been used

to detect changes in the level and the slope of a process mean. Monte Carlo simulations

revealed that these control charts have excellent detection properties, even when applied

to stationary time series under conditional heteroskedasticity.

Local linear estimation is, nowadays, a well established approach to the nonparametric

estimation of conditional means, and well studied in terms of its efficiency properties, see,

e.g., Fan and Gijbels [1996] and Antoch et al. [2002]. It has recently been used by Grégoire

and Hamrouni [2002] for a posteriori (off line) estimation of a jump point in a smooth

curve. Here a random regression design is assumed and estimation is based on a process

which converges to a compound Poisson process. The estimation of the location of isolated

jumps in piecewise continuous regression functions is a problem that has been studied for

quite a long time. We refer to the papers of Wu and Chu [1993] and Müller and Song

[1997], among others. Müller and Stadtmüller [1999] and Horváth and Kokoszka [2002]

investigated the problem of testing smoothness against the alternative of at least one jump
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for the fixed design i/n for the regressor. The i.i.d. regression setting was recently studied

by Antoch et al. [2007] assuming the classic i.i.d. regression framework. For methods to

detect changes in autoregressive time series confer Hušková et al. [2007, 2008].

In the present paper we study the asymptotic distribution theory of sequential local linear

estimation for random walks, where no restrictive i.i.d. assumption is imposed upon the

increments; the case of stationary processes will be studied in a separate paper. We assume

the classic framework of time series analysis where the observations may be correlated

and are sampled at discrete fixed time points, which do not get dense as the maximum

sample size increases. At first glance, this seems to be odd, but our interest is not in

consistent estimation of the mean. Instead, we address the question of sequentially detecting

a change in the mean. For that purpose, consistent estimation is not required, and assuming

an arbitrary nonparametric mean function, it is impossible within the classic time series

framework. Assuming that the observations are taken at time points from an arbitrary fine

grid with fixed mesh leads to interesting non-standard asymptotic laws, particularly for the

random walk case studied here. Our simulation study presented below in detail indicates

that the approximations obtained by these asymptotic laws are remarkably accurate even

for very small sample sizes, which is beneficial for practical applications. Related results

for procedures employing the Nadaraya-Watson estimator in the same framework have

been obtained by Steland [2005]. Truncated change-point detection for renewal counting

processes has been studied by Gut and Steinebach [2002].

From a theoretical viewpoint, the question arises as to whether the local linear approach

is applicable at all, i.e., estimates well defined functional parameters of the trend function,

asymptotically. The development of an appropriate asymptotic distributional theory mat-

ters as well. For that purpose, we consider a framework where the trend of the time series,

given by a sequence resp. array of constants, is induced by an underlying trend function

µ. We demonstrate that this framework allows to handle various change-point models for

random walk time series which are of practical interest. In these models the underlying

function µ has a simple and intuitive interpretation. It defines the change-point as well as

the process mean (trend) after the change. The local linear estimation approach locally

fits a straight line to the data. It turns out that, locally in large samples, the intercept and

slope parameters are related to µ and its integral function, which justifies the application

of local linear estimation in the present context. However, the proposed method itself does

not require knowledge of µ as in many other approaches, e.g., likelihood based procedures.

We will represent the proposed detection procedures as functionals of an underlying bi-

variate sequential empirical process. The asymptotic theory given here deals with a new

bivariate functional central limit theorem (FCLT) which describes the asymptotic behav-
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ior of that process, in distribution. The FCLT implies central limit theorems (CLTs) for

the surveillance procedures. However, the interpretation of our results is not restricted to

sequential analysis. The sequential empirical process represents the sequence of local linear

estimates as a function on the unit interval [0, 1]. When evaluated at t = 1, it coincides

with the local linear estimates calculated from the full sample and calculated at the point

n. Thus, the results of the present paper cover an interesting CLT for the classic local

linear estimator at the boundary under non-standard conditions as well.

Surveillance procedures require to specify a control limit, which plays a similar role as

the critical value in hypothesis testing. A common approach is to select the control limit to

ensure that the average run length is larger or equal to a given constant, provided the null

hypothesis holds. However, other design criteria can be chosen and have been studied in the

literature, e.g., the point-wise false alarm rate, the median run length, or the type I error

rate. Based on our asymptotic results, which provide an approximation for the unknown

distribution of the detector, one can easily design a surveillance procedure according to

various design criterion.

The paper is organized as follows. Section 2 introduces the model framework, the required

assumptions, and discusses change-point models which are covered by our setting. Local

linear estimation and the associated local linear detector are discussed in detail in Section 3.

Section 4 presents the main theoretical results. We provide a rigorous justification of the

local linear estimation principle for our setting and establish FCLTs for the sequential

bivariate local linear processes. These results yield CLTs for the corresponding surveillance

procedures. Detailed proofs are postponed to Section 6.

2. TIME SERIES MODEL AND ASSUMPTIONS

Let us now introduce the change-point model of the paper. Since we aim at studying the

asymptotic distribution theory of the proposed method under local alternative models for

the drift, we assume that we are given an array {YTt : t = 1, . . . , T, T ≥ 1} of real-valued

random variables satisfying

(2.1) YTt = mTt + εTt, t = 1, . . . , T, T ∈ N,

where {εTt} is an array of zero mean error terms. To phrase our assumptions on {εTt}, we

need some notations. Let bxc denote the largest integer which is smaller or equal to x ∈ R.

Notice that to each array, say, {ZTt}, of random variables we may attach a sequence of

càdlàg processes, namely, s 7→ ZT,bTsc, s ∈ [0, 1], T ≥ 1. These processes attain values

in the Skorohod space D[0, 1] of all right-continuous functions [0, 1] → R with existing
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left-hand limits. The weak convergence of a sequence of such processes will be denoted by

⇒. For details we refer to Billingsley [1999].

The following assumption basically requires that the error terms behave asymptotically

as a pure random walk.

Assumption (E): Assume {εTt : 1 ≤ t ≤ T, T ≥ 1} is an array of zero mean random

variables with

(2.2) T−1/2εbTsc ⇒ ηB(s),

as T →∞, for some constant η ∈ (0,∞).

Here and in what follows B denotes a standard Brownian motion (Wiener process).

Remark 2.1 Suppose that, in addition to Assumption (E), the first-order differences εT,t−
εT,t−1 form an array of row-wise stationary sequences. Then {εT,t} satisfies a nonparametric

definition for the notion of an integrated process of order 1.

Notice that Assumption (E) is very weak and covers many important classes of time

series. Let us consider the special case that the error terms form a pure random walk. That

means, εTt =
∑t
i=1 ξT i, where ξT1, . . . , ξTT are i.i.d. with E(ξT i) = 0, for any T ≥ N. By

virtue of Donsker’s theorem, Assumption (E) is satisfied. However, (2.2) holds under much

more general conditions on the increments. For example, if {ξT i} is a martingale difference

scheme satisfying a (conditional) Lindeberg condition, or if ξT i = ξi, i ∈ N, T ∈ N, is

α-mixing with mixing coefficients which decrease sufficiently fast. For details we refer to

Durrett [2005].

The constants mTt in Eq. (2.1) represent the trend and are assumed to be generated as

follows.

Assumption (M): Suppose that

mTt = T 1/2
∫ t/T

0
µ(r) dr + o(T 1/2), 0 ≤ t ≤ T, T ≥ 1,

for some function µ : [0, 1]→ R with
∫ 1
0 |µ(r)| dr <∞.

It is worth noting that the function µ plays the role of the derivative of the trend, and

its integral yields the level. At first glance, the scaling with T 1/2 and the remainder o(T 1/2)

may look strange, but our asymptotic results imply that these are the correct rates yielding

non-trivial limits depending on the µ.

Let us discuss two examples.
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Example 2.1 Suppose {mTt} satisfies (M) with µ(r) = µ0, r ∈ [0, 1], for some constant

µ0 ∈ R. Obviously, mT,bTsc = bTsc√
T
µ0, and due to Assumption (E)

1√
T
YT,bTsc =

bTsc
T

µ0 +
1√
T
εT,bTsc ⇒ sµ0 + ηB(s),

as T →∞.

More important are random walks with drift and correlated increments.

Example 2.2 Suppose that YT,t is a random walk,

(2.3) YTt =
t∑
i=1

ξT i, 1 ≤ t ≤ T, T ≥ 1,

with increments given by

(2.4) ξTt =
1√
T
µ
(
t

T

)
+ ζTt,

where the array {ζTt} satisfies Assumption (E). If we put εT,t = ζT,t and define

mT,t =
1√
T

t∑
i=1

µ
(
i

T

)

for 1 ≤ t ≤ T , T ∈ N, then E(YTt) = mTt, i.e., model equation (2.1) as well as Assumptions

(E) and (M) hold. Further, in this case we have

1√
T
YT,bTsc =

1√
T
mT,bTsc +

1√
T
εT,bTsc

⇒
∫ s

0
µ(r) dr + ηB(s),(2.5)

as T →∞.

More generally, the weak convergence result in (2.5) holds under Assumptions (E) and

(M).

Lemma 2.1 Given Assumptions (E) and (M),

1√
T
YT,bTsc ⇒

∫ s

0
µ(r) dr + ηB(s),

as T →∞.
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Remark 2.2 Notice that the limit process can be written as
∫ s
0 µ(r) dr+

∫ s
0 σ(r) dB(r), if

σ(r) = η, r ∈ [0, 1], thus belonging to the class of Itô processes with deterministic drift and

constant volatility.

Remark 2.3 It is worth mentioning that Assumptions (E) and (M) are satisfied for

discretely observed continuous time processes of the class

Z(t) =
∫ t

0
µ(r) dr + σB(t), t ∈ [0, 1],

where the drift µ ∈ L1 is deterministic and σ ∈ (0,∞) a constant. Suppose that Z is

observed at the grid t/T, t = 0, . . . , 1, T ≥ 1. Then the array ZT,t = T 1/2Z(t/T ) clearly

satisfies our assumptions.

Let us now consider some change-point models of interest.

Example 2.3 (Linear Drift After an Unknown Change-Point)

This model corresponds to the choice

(2.6) µ(s) = ∆1[ϑ,1](s), s ∈ [0, 1],

for some constant ∆ 6= 0 and a fixed but unknown change-point parameter ϑ ∈ (0, 1),

yielding

mTt =

 0, 0 ≤ t < Tϑ,√
T
(
t
T
− ϑ

)
∆, Tϑ ≤ t ≤ T.

for t = 1, . . . , T . This means, for large T the fraction of pre-change mean-zero observations

is approximately ϑ, and after the change-point there is a linear drift in the data, which is

determined by the parameter ∆.

Generalizing to multiple change-points of this type yielding a piecewise linear function

underlying the sequence mTt is straightforward. The next example provides a change-point

model for the setting studied in Example 2.2.

Example 2.4 (Change-Point Model for the Drift of a Random Walk)

Consider again the random walk model (2.3) with increments ξTt given by (2.4). Then

ξT i =

 ζT i, 0 ≤ i < Tϑ,
1√
T
µ(i/T ) + ζT i, Tϑ ≤ i ≤ T.
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Further, suppose

µ(s) = 0, s ∈ [0, ϑ), µ(s) > 0, s ∈ [ϑ, ϑ+ ε), for some ε > 0,
∫ 1

ϑ
|µ(s)| ds <∞.

Now the ξT is have mean zero before the change, and after the change their expectation equals

T−1/2µ(i/T ). Hence mTt = 0 for 0 < t < Tϑ, and mTt = T−1∑t
i≥Tϑ µ(i/T ), if Tϑ ≤ t ≤ T ,

with mT,bTϑc > 0 by assumption. Again, we obtain YT,bTsc ⇒
∫ s
ϑ µ(r) dr+ηB(s), as T →∞.

In general, a change-point model for the trend can be phrased as

µ(t) =

 µ0(t), if t < ϑ ,

µ0(t) + ∆(t), if ϑ ≤ t,

for t ∈ [0, 1], where µ0 denotes the in-control model (H0) and ∆ represents the de-

parture from it under the out-of-control (alternative) model, i.e., after the change-point

bTϑc, which is parameterized by ϑ ∈ [0, 1]. To guarantee Assumption (M) suppose that∫
|µ0(s)| ds,

∫
|∆(s)| ds <∞.

The aim is to sequentially test the null hypothesis H0 : µ = µ0 against the alternative

hypothesis

H1 : ∃ϑ ∈ (0, 1) : µ = µ0 on [0, ϑ) and µ = µ0 + ∆ on [ϑ, 1],

by means of a surveillance procedure (stopping time.)

Remark 2.4 Notice that w.l.o.g. one may assume µ0 = 0. Indeed, otherwise consider the

transformed observations

ỸTt = YTt −
√
T
∫ t/T

0
µ0(r) dr, 1 ≤ t ≤ T, T ≥ 1.

Now the r.v.s {ỸTt} satisfy Assumption (M) with µ replaced by µ − µ0, which vanishes

under H0.

3. SEQUENTIAL LOCAL LINEAR ESTIMATION AND RELATED SURVEILLANCE
PROCEDURES

In the regression setting local polynomial fitting, studied by Stone [1977], Cleveland

[1979], Tsybakov [1986] and Masry and Fan [1997], among others, reduces the bias of the

Nadaraya-Watson estimator and adapts automatically to the boundary of design points.

Here we examine a sequential version assuming the time series setting. The basic idea of

local linear estimation is as follows. The trend, which is a function mT (t) = mTt of t, is
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approximated by a linear function, locally at the current time instant tn = n ∈ N. That is,

one assumes the validity of the approximation

mT (s) ≈ β0n(tn) + β1n(tn)(s− tn)

with (local) intercept β0n = β0n(tn) and slope β1n = β1n(tn). In the next section we provide

an asymptotic justification of that approximation and identify the parameters β0n and β1n

and their limits.

Now one proceeds by fitting the local model to the data using weighted least squares

where the weights ensure that squared residuals corresponding to observations near the

current time tn dominate the objective function. We shall use kernel weights

wni = Kh(ti − tn)/
n∑
j=1

Kh(tj − tn), i = 1, . . . , n,

for some given smoothing kernel function K : R→ R. Notice that one may assume that K

is symmetric. h > 0 is a bandwidth and Kh(z) = K(z/h)/h, z ∈ R, is the rescaled kernel.

For sake of simplicity of exposition we omit the dependence of wni on h in our notation.

3.1. Assumptions on the kernel and the bandwidth

Concerning the bandwidth we use the following condition.

Assumption (H). The bandwidth h is chosen as function of T , i.e., h = hT such that

(3.1)
∣∣∣∣Th − ξ

∣∣∣∣ = O(T−1).

for some known constant ξ ∈ [1,∞).

Particularly, one may put h = T/ξ. Before discussing this assumption, let us consider

the rather weak assumptions on the smoothing kernel K.

Assumption (K). Suppose that K is Lipschitz continuous, bounded, i.e., ‖K‖∞ <∞,

and positive on (−ξ, ξ).
Common choices for K are bounded probability densities with mean 0, unit variance and

the additional property that K(z) is decreasing in |z|.
Notice that our approach for bandwidth selection differs from the usual conditions in the

literature aiming at estimation (conditional) means where one assumes h → 0 and Th →
∞. To discuss this issue, let us assume that K has support [−1, 1]. Then for estimation

of m(ti) only observations Yj with |tj − ti| ≤ h → 0 are used. The asymptotic theory

for consistency of local linear smoothers, which can be written as kernel smoothers w.r.t.
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to a specific smoothing kernel, relies on the following facts. Due to Parzen’s lemma the

expectation of

m̃n(t) =
1

nh

n∑
i=1

K((t− ti)/h)Yi,

which is equal to

E(m̃n(t)) =
∫
h−1K((t− z)/h)m(z)dF (z),

if ti ∼ F , converges to m(t), as h→ 0. However, the variance of m̃n(t) is O((nh)−1), which

yields the constraint nh → ∞. Consequently, in this setting one has to assume that the

data get dense as T →∞, thus requiring an appropriate sampling design (fixed design) or

random sampling w.r.t. to a positive density.

However, when detection of changes for time series is the goal, consistency is not a must

and in many cases the assumption that the data get dense as the sample size increases,

is not realistic. When assuming that the observations are observed at deterministic fixed

time points not depending on T , it makes sense to choose the bandwidth h proportional to

T to ensure that the number of observations available during [t− h, t+ h] tends to ∞, as

T → ∞. This justifies our Assumption (3.1), which additionally imposes the convergence

rate T−1, ruling out artificial choices as h = T/ξ + T−1/2. Finally, Assumption (H) is also

used in Aue et al. [2009] to obtain asymptotic results for stopping times based on moving

sum detectors when the errors satisfy a FCLT.

It is also worth mentioning that our simulation study presented below shows that the

setting studied in this paper provides accurate approximations even for small sample sizes.

Thus, from an applied viewpoint, our non-standard approach proves to be useful. However,

data-adaptive bandwidth selection for detection procedures remains an interesting and

important issue which will be studied in future papers.

3.2. Sequential local linear estimation and related detectors

To simplify exposition we shall omit the dependence of Yt on T in our notation. Let us

introduce the inner product

(x,y)n = x′Wny, x,y ∈ Rn,

and denote the associated norm by ‖x‖n =
√

(x,x)n, x,y ∈ Rn. The minimizers of the

objective function

n∑
i=1

wni(Yi − β0 − β1(ti − tn))2, (β0, β1) ∈ R2,
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are given by

β̂1n =
(Yn − Y n1n, tn − tn1n)n

‖tn − tn1n‖2n
,

β̂0n = Y n − β̂1ntn,

where, with some abuse of notation, Y n =
∑n
i=1wniYi, tn =

∑n
i=1wniti, 1n = (1, . . . , 1)′ ∈

Rn, and

Y = (Y1, . . . , Yn)′,

tn = (t1 − tn, . . . , tn−1 − tn, 0)′,

Wn = diag (wn1, . . . , wnn).

The proposed local linear detectors are based on the sequential empirical processes asso-

ciated to the sequences β̂i(n), n = 2, . . . , T , i = 0, 1. For s ∈ [0, 1] define

β̂0T (s) = β̂0,bTsc, and β̂1T (s) = β̂1,bTsc.

To ensure that the procedure is based on a sufficient amount of information, we define the

start of monitoring, denoted by k, as a fraction of the maximal sample size T , i.e., we put

k = bTκc

for some κ ∈ (0, 1).

To detect deviations of the process mean from an assumed in-control model µ0 = 0

corresponding to the null hypothesis H0 : µ = 0, consider the stopping rule

(3.2) LT = LT (cL) = inf{k ≤ n ≤ T : T−1/2β̂0T (n/T ) > cL}

for some control limit cL. The scaling factor T−1/2 is, indeed, the correct convergence rate

when the errors form a random walk, as will be shown in the next section.

The control limit should be selected to ensure that the procedure has well defined statisti-

cal properties in large samples. To simplify exposition and due to its ease of interpretation,

we consider the case that the control limit is chosen to guarantee an asymptotic nominal

type I error rate, i.e.,

(3.3) lim
T→∞

P0(LT (cL) < T ) = α

for some given α ∈ (0, 1). Here, P0 indicates that the probability is calculated assuming

µ = µ0. The asymptotic results given in the next section indeed allow us to select cL, such

that (3.3) is satisfied.
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One may also study a surveillance procedure which gives a signal if the estimated slope

parameter is too large. For that purpose consider

ST = ST (cS) = inf{k ≤ n ≤ T : T−1/2β̂1T (n/T ) > cS},

for a control limit cS. Clearly, the above discussion on the selection of the control limit to

achieve a given nominal type I error rate applies.

The results of the following section will show that LT is suited to detect changes in terms

of
∫ t
ϑ ∆(s) ds, whereas ST addresses ∆(t) itself.

4. ASYMPTOTIC THEORY

In this section, we provide an asymptotic justification of the assumption of a locally

linear trend, which underlies the local linear estimation approach. Further, we provide an

invariance principle for the local linear processes, which will imply central limit theorems for

the proposed detectors. Our main result holds under Assumption (M) on the deterministic

drift present in the time series {YTt}, which is induced by the function µ. Having in mind

the change-point models given above, the choice µ = 0 yields the FCLT under the in-

control model, i.e., when there is no change in the series. If µ 6= 0, the FCLT provides the

asymptotic properties under that local alternative.

4.1. Asymptotic linear representation

Let us start with the following result yielding an asymptotic linear representation of the

array {mTt} of process means, which justifies the local linear estimation approach and

identifies the (asymptotic) parameters. Given the framework of the present paper, it serves

as a substitute of the usual assumption that the mean to be estimated can be locally

approximated by a linear function. Recall that n is interpreted as the current time instant.

Lemma 4.1 Given Assumption (M), the array {mTt} has the following property. For

T ≥ 1 and 1 ≤ n ≤ T

(4.1) mTt = β0T (n) + β1Tt(n)
(
t

T
− n

T

)
+ o(T 1/2),

where

β0T (n) =
√
T
∫ n/T

0
µ(r) dr,

β1Tt(n) =
√
Tµ(ξ∗Tnt),

for some ξ∗Tnt between n/T and t/T .



LOCAL LINEAR SURVEILLANCE OF RANDOM WALKS 13

Remark 4.1 (i) Notice that β0T (n) recovers the higher order term in the trend mTn,

and β1T (n) its ’derivative’.

(ii) If µ ∈ C1([0, 1]), one may put β1Tt(n) =
√
Tµ(n/T ).

As a corollary, we obtain the following result, which identifies the asymptotic behavior

of β0T and β1Tt, locally near the current time instant, i.e., for t ≈ n, with n ∼ T → ∞.

It also shows that (4.1) indeed yields an asymptotic linear representation of the process

mean.

Corollary 4.1 Given Assumption (M), we have uniformly for s ∈ [0, 1]

T−1/2β0T

(
bTsc
T

)
→
∫ s

0
µ(r) dr,

as T →∞, and

T−1/2β1Tt

(
bTsc
T

)
→ µ(s),

provided t/T → s, as T → ∞. The latter convergence is uniform in s ∈ [0, 1] if µ is

continuous

4.2. Asymptotic distributions

The main theoretical result of this paper is the following FCLT which provides the joint

asymptotic law of the local linear estimates, studied as a pair of (sequential) càdlàg pro-

cesses. Establishing the joint asymptotic law particularly allows us to construct detection

procedures depending on both the intercept and slope estimates as control statistics.

Theorem 4.1 Given Assumptions (E), (H), (K) and (M), we have T−1/2β̂0T (s)

T−1/2β̂1T (s)

⇒
 Z(s)− C−1(s)A(s)D(s)

C−1(s)A(s)

 ,
jointly as T →∞, where

D(s) = ξ
∫ s

0
Ks(ξ(r − s))r dr,(4.2)

C(s) = ξ
∫ s

0
Ks(ξ(r − s))Wξ(r, s) dr,(4.3)

Wξ(r, s) = ξ(r − s)− ξ
∫ s

0
Ks(ξ(z − s))z dz.(4.4)
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Further, the processes A(s) and Z(s) are given by

A(s) = ξ
∫ s

0
Ks(ξ(r − s))

(
Y(r)− ξ

∫ s

0
Ks(ξ(z − s))Y(z) dz

)
Wξ(r, s) dr

and

Z(s) = ξ
∫ s

0
Ks(ξ(r − s))Y(r) dr,

respectively, with

Y(s) =
∫ s

0
µ(r) dr + ηB(s),

for s ∈ [0, 1]. In these formulas, Ks(z) = K(z)/
∫ s
0 ξK(ξ(r−s)) dr, for z ∈ R and s ∈ [κ, 1].

Central limit theorems for the stopping times proposed above are now straightforward.

Corollary 4.2 Given Assumptions (E), (H), (K) and (M), we have joint convergence

in distribution of

LT/T
d→ inf{s ∈ [κ, 1] : C−1(s)A0(s)D(s) > cL},

and

ST/T
d→ inf{s ∈ [κ, 1] : C−1(s)A0(s) > cS}

as T →∞, where A0 denotes the process defined in Theorem 4.1 with µ = 0.

These results can be used to determine control limits ensuring, e.g., that the procedure

attains a specific type I error rate, asymptotically. We study the accuracy of the resulting

approximations to some extent in the next section.

5. SIMULATIONS

We conducted a simulation study to examine the accuracy of the distributional approxi-

mation obtained by central limit for the stopping time LT as well as the resulting detection

performance. Our focus is on the influence of the bandwidth selection on the statistical

properties of the method, which corresponds to the choice of ξ, the limit of T/h. Further,

we compared the detector based on the local linear approach with a classic CUSUM pro-

cedure which is known to be powerful to detect changes in the mean and often used in

quality control.
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Time series were sampled according to the model

Yn =
n∑
i=1

(∆1{i≥q} + εi), n = k, . . . , T,

with a shift ∆ ∈ {0.2, 0.4, 0.6} after the change-point q = bTϑc with ϑ ∈ {∞, 0.25, 0.5, 0.75}
and i.i.d. standard normal error terms εt. Thus, we examined early changes as well as late

changes of various magnitude. We were interested in analysing the small sample case and

selected T = 100 and T = 200, respectively, for our study.

To these samples the level detector LT was applied using a Gaussian kernel and the

bandwidth h = T/ξ with ξ ∈ {10, 20, 40}. Detection was started at the 25th observation.

We compared our proposal to a simple and commonly applied procedure which would be

a reasonable candidate among the classic detection procedures, namely a CUSUM control

chart. Specifically, we applied a one-sided CUSUM chart with reference value K = 0.5 and

control limit H = 6.5 given by

min{k ≤ n ≤ T : Cn > H} Cn = max(0,∆Yn − (µ0 +K) + Cn−1), C0 = 0,

where ∆Yn = Yn−1−Yn. The CUSUM chart is usually designed to monitor an infinite series

with a certain in-control ARL. However, the above CUSUM chart attains a comparable

type I error rate for T = 250, thus allowing comparisons.

Table I provides the results of 20,000 independent replications for each entry.

It can be seen that the proposed approximations by the distributional limit process

based on our functional central limit theorems provide accurate approximations even for

very small sample sizes as investigated here. To detect a linear trend in a random walk

smaller values of ξ seem to be preferable. However, the loss in detection power due to

larger values, which yield a smaller bias, is minor. Having this mind, one can select rather

small bandwidths h. A discussion of more refined bandwidth selection strategies, e.g. data-

dependent rules, is, however, beyond the scope of the present paper and will be addressed

in greater detail in future work.

The results from the simulation study also indicate that our method based on sequential

local linear estimation yields substantially higher detection rates compared to the CUSUM

method except for very later changes when the shift is large (ϑ = 0.75 and ∆ = 0.6 in our

simulation study); here the CUSUM chart performs better. In all other settings, which are

more important for applications, the new method substantially outperforms the CUSUM

chart.

6. PROOFS

This section is devoted to rigorous proofs of the results presented in Section 4.
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TABLE I

Simulated performance of the local linear detector and comparison with a CUSUM

procedure.

T ϑ ∆ ξ CUSUM
10 20 40

100 1 0.1 0.072 0.068 0.062 0.021
0.25 0.1 0.22 0.206 0.187 0.054

0.2 0.483 0.451 0.438 0.128
0.4 0.914 0.91 0.909 0.514
0.6 0.998 0.998 0.997 0.918

0.5 0.1 0.152 0.141 0.125 0.039
0.2 0.283 0.262 0.25 0.090
0.4 0.644 0.619 0.604 0.368
0.6 0.915 0.91 0.894 0.785

0.75 0.1 0.097 0.092 0.087 0.03
0.2 0.135 0.121 0.115 0.049
0.4 0.263 0.243 0.24 0.184
0.6 0.449 0.422 0.411 0.477

250 1 0.1 0.071 0.066 0.059 0.052
0.25 0.1 0.359 0.328 0.321 0.130

0.2 0.784 0.757 0.752 0.300
0.4 0.999 0.998 0.998 0.850
0.6 1 1 1 0.999

0.5 0.1 0.227 0.2 0.186 0.108
0.2 0.481 0.462 0.445 0.228
0.4 0.931 0.931 0.916 0.720
0.6 0.999 0.998 0.999 0.988

0.75 0.1 0.126 0.104 0.097 0.081
0.2 0.198 0.178 0.168 0.147
0.4 0.459 0.44 0.421 0.461
0.6 0.76 0.739 0.711 0.867
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Proof of Lemma 4.1 and Corollary 4.1. Fix 1 ≤ n ≤ T and note that by

Assumption (M)

mTt =
√
TFµ(t/T ) + o(T 1/2),

where Fµ(x) =
∫ x
0 µ(r) dr, x > 0. Using the fact that there exist ξ∗Tnt between t/T and n/T

such that

Fµ(t/T ) = Fµ(n/T ) + µ(ξ∗Tnt)(t/T − n/T )

we obtain

mTt =
√
TFµ(n/T ) +

√
Tµ(ξ∗Tnt)(t/T − n/T ) + o(T 1/2),

which proves Lemma 4.1. If we put n = bTsc, s ∈ [0, 1],

β0T (bTsc) =
√
T
∫ bTsc/T
0

µ(r) dr, β1Tt(bTsc) =
√
Tµ(ξ∗T,bTsc,t),

where ξT,bTsc,t → 0. Thus,
√
Tβ0T (bTsc)→

∫ s
0 µ(r) dr, as T →∞. Further, ξT,bTsc,t → s, if

t/T → s, as T →∞, yielding T−1/2β1Tt(bTsc)→ µ(s) under these conditions. �

We are now in a position to prove the invariance principle for the local linear process

under the random walk change-point model.

Proof of Theorem 4.1. Let us first consider β̂1T (s). Notice that

T−1/2β̂1T (s) = C−1
T (s)AT (s)

where

CT (s) =
1

h

bTsc∑
i=1

KbTsc

(
i− bTsc

h

)(
i− bTsc

T
− 1

h

bTsc∑
j=1

KbTsc

(
j − bTsc

h

)
j

T

)

which equals

T

h

bTsc
T∫

0

KbTsc

(
bTrc − bTsc

h

)[
bTrc − bTsc

T
− T
h

bTsc
T∫

0

KbTsc

(
bTzc − bTsc

h

)
bTzc
T

dz

]
dr,

and

AT (s) =
1

h

bTsc∑
i=1

KbTsc

(
i− bTsc

h

)(
1√
T
Yi −

1

h

bTsc∑
j=1

KbTsc

(
j − bTsc

h

)
1√
T
Yj

)
WT (r, s)
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with

WT (r, s) =
bTrc − bTsc

T
− T

h

∫ bTsc/T
0

KbTsc

(
bTzc − bTsc

h

)
bTzc
T

dz.

Here, KbTsc(z) = K(z)
(
h−1∑bTsc

j=1 K([j − bTsc]/h)
)−1

, z ∈ R. Using Assumption (K), it is

straightforward to check the following statements which we shall use in the sequel.

(i) Ks is Lipschitz continuous with Lipschitz constant L = LK(
∫ κ
0 ξK(ξ(r−s)) dr, where

LK denotes a Lipschitz constant for K.

(ii) sups∈[κ,1] |KbTsc(zT,s)−Ks(zs)| = O(sups∈[κ,1] |zT,s − zs|) for functions zs, zT,s, T ∈ N.

(iv) sups∈[κ,1] |KbTsc(z1)−KbTsc(z2)| ≤ L|z1 − z2|+O(T−1) for large T .

Using (i) we observe that∣∣∣∣∣KbTsc
(
bTzc − bTsc

h

)
−Ks(ξ(z − s))

∣∣∣∣∣ ≤ L

∣∣∣∣∣bTzc − bTsch
− ξ(z − s)

∣∣∣∣∣ = O(1/T ),

which implies |KbTsc( bTzc−bTsch
) bTzc

T
−Ks(ξ(z − s)ξ)| = O(1/T ). We can conclude that

sup
s∈[0,1]

∣∣∣∣∣
∫ s

0
KbTsc

(
bTzc − bTsc

h

)
bTzc
T

dz − ξ
∫ s

0
Ks(ξ(z − s))z dz

∣∣∣∣∣ = o(1).

Iterating these arguments we see that

lim
T→∞

sup
s∈[0,1]

|CT (s)− C(s)| = 0,

where C is defined in (4.3). By virtue of Lemma 2.1 and the Skorohod representation

theorem in general metric spaces (Shorack and Wellner [1986, Th. 4, p.47]), there exists a

probability space (Ω̃, F̃ , P̃ ) and stochastic processes {Ỹ(s)} and {ỸT,bT ·c} defined on a new

probability space (Ω̃, F̃ , P̃ ) such that {Ỹ} is equivalent to {Y} , {ỸT,bT ·c} is equivalent to

{YT,bT ·c}, and

‖T−1/2ỸT,bT ·c − Y‖∞ → 0

w.p. 1, as T →∞. Here Y is as defined in Theorem 4.1. However, to simplify our exposition

we will denote these equivalent processes again by YT,bT ·c and Y . Also recall that the second

half of Skorohod’s theorem asserts that convergence in probability in the Skorohod metric

of the equivalent processes yields weak convergence of the original processes.

Next notice that AT (s) can be represented by a sequence of statistical functionals ψT :

D[0, 1]→ D[0, 1], T ∈ N. Indeed, we have

AT (s) = ψT (T−1/2YbT ·c)(s), T ∈ N,
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where the function ψT (f), f ∈ D[0, 1], is defined by

ψT (f)(s) =
T

h

∫ bTsc/T
0

KbTsc

(
bTrc − bTsc

h

)(
f(r)− T

h
φT (f)(s)

)
WT (r, s) dr,

for s ∈ [0, 1]. The functionals φT : D[0, 1]→ D[0, 1] are given by

φT (f)(s) =
∫ bTsc/T
0

KbTsc

(
bTrc − bTsc

h

)
f(z) dz, f ∈ D[0, 1], s ∈ [0, 1].

Let us first consider the latter functional. We shall verify that its limit is the functional

φ(f), f ∈ D[0, 1], defined by

φ(f)(s) =
∫ s

0
Ks(ξ(r − s))f(z) dz, s ∈ [0, 1].

Clearly, |φT (T−1/2YbT ·c)− φ(Y)| can be bounded by

|φT (T−1/2YbT ·c)− φT (Y)|+ |φT (Y)− φ(Y)|.

The first term can be estimated by ‖K‖∞‖T−1/2YbT ·c − Y‖∞, and the second one is not

larger than

2L sup
z∈[0,1]

|bTzc/h− ξz| sup
s∈[0,1]

|Y(s)| = OP (1/T ).

It follows that

‖φT (T−1/2YbT ·c)− φ(ηB)‖∞
P→ 0,

as T →∞, and consequently

φT (T−1/2YbT ·c)⇒ φ(ηB),

as T →∞. Now one can easily conclude that

ρT (T−1/2YbT ·c) = T−1/2YbT ·c −
T

h
φT (T−1/2YbT ·c)

converges w.r.t. the supnorm in probability, and hence also weakly, to the process

ρ(Y)(·) = Y(·)− ξφ(Y(·)),

as T →∞. Noting that

ψT (f) =
T

h

∫ s

0
φT (f(r))WT (r, s) dr, f ∈ D[0, 1],
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has the same form as φT , we obtain

‖ψT (T−1/2YbT ·c)− ψ(Y)‖∞ → 0,

as T → ∞, in probability. Since the limit of C−1
T (s) is a deterministic function, the func-

tional version of Slutzky’s theorem yields

β̂1T (s)⇒ C−1(s)A(s)

where for s ∈ [0, 1]

A(s) = ξ
∫ s

0
Ks(ξ(r−s))

(
Y(r)−ξ

∫ s

0
Ks(ξ(z−s))Y(z) dz

)(
r−s−ξ

∫ s

0
Ks(ξ(z−s))z dz

)
dr.

The result for β̂0(s), s ∈ [0, 1], follows now easily from the representation

T−1/2β̂0(s) =

1

h

bTsc∑
i=1

KbTsc

(
i− bTsc

h

)
1√
T
Yi −

1√
T
β̂1T (s)

(
1

h

bTsc∑
i=1

KbTsc

(
i− bTsc

h

)
i

T

)
.(6.1)

Denote the first term by ZT (s) and note that

ZT (s) = φT (YbT ·c)(s)⇒ Z(s),

as T →∞. Further, for u ∈ {0, 1} the function

D
(u)
T (s) =

1

h

bTsc∑
i=1

KbTsc

(
i− bTsc

h

)(
i

T

)u
=
T

h

∫ s

0
KbTsc

(
bTrc − bTsc

h

)(
bTrc
T

)u
dr

converges point-wise to the function

D(u)(s) = ξ
∫ s

0
Ks(ξ(r − s))ru dr,

as T →∞, and, by continuity of D, we even have uniform convergence in s ∈ [0, 1]. Thus,

since D(1) = D,

(D
(1)
T , ZT , T

−1/2β̂1T )⇒ (D,Z, C−1A)

in the product space (D[0, 1])3. Notice that the limit processes at the right-hand side are

continuous a.s. Now the result follows by an application of the continuous mapping theorem

using the mapping

(x, y, z) 7→ y − xz, x, y, z ∈ D[0, 1].

For the continuity properties of this mapping confer Whitt [1980]. The last facts also

establish the joint weak convergence of β̂0T and β̂1T . �

Proof of Corollary 4.2. The result follows by noting that the processes are a.s.

continuous, since C and D are continuous functions on [κ, 1], and the process A is a.s.

continuous by virtue of the assumptions on K and µ. �
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